Hydrothermal Sediment Fluxes on the Mid-Atlantic Ridge (at TAG and Broken Spur Vent Fields)

FESD Workshop December 2014

Jennifer Middleton (Harvard/UC Davis) Sujoy Mukhopadhyay (UC Davis) Charlie Langmuir (Harvard) Zhongxing Chen (Harvard) Jerry McManus (Columbia/LDEO)

Hydrothermal Sediments: A record of hydrothermal activity?

High temp fluids enriched in: H₂, CO₂, H₂S, Mn, Fe, Cu, Zn, Pb, etc...

Plumes scavenge V, As, P, and REEs from seawater

Mid-Atlantic Ridge Study Area

[Hydrothermal vent and plume locations from InterRidge Vents Database]

Broken Spur and GGC6: 7 km apart

Broken Spur Core (GGC6): Context

lat. 29.207 °N long. 43.230 °W depth 3004 m

Broken Spur Core (GGC6): Context

Broken Spur Core (GGC6): Why flux matters

Broken Spur Core (GGC6): Why flux matters

TAG Core (GGC3): Context

lat. 26.142 °N long. 44.804 °W depth 3433 m

TAG Core (GGC3): Context

δ180 benth. (ο/οο)

Hydrothermal Sed. Flux Variations: Local current shifts direction?

Would local current only shift during LGM and not otherwise?

Hydrothermal Sed. Flux Variations: Change in hydrothermal activity

Conclusions:

No sign of hydrothermal sediment in Broken Spur core (GGC6)

Clear spike in hydrothermal accumulation during Last Glacial Maximum (LGM) at TAG

 \rightarrow may record large increase in hydrothermal activity

