

Some Predictions of Ice Age Sea Level Change

Glacial Isostatic Adjustment

Numerically Predicted Sea Level Change Since LGM

ICE-5G/VM2

Glacial Isostatic Adjustment

Numerically Predicted Sea Level Change Since LGM

ICE-5G/VM2

SADDLE/LM

Glacial Isostatic Adjustment

Barbados-based estimate of ice volume at Last Glacial Maximum affected by subducted plate

Jacqueline Austermann^{1★}, Jerry X. Mitrovica¹, Konstantin Latychev² and Glenn A. Milne³

Finite Volume Numerical Predictions of Post-Glacial Sea Level Change

Late Cretaceous Paleomap, (R. C. Blakey, NAU)

Modeling Mantle Convection with Seismic Tomography

Simmons et al. [GJI, 2009]

Seismic data: ~46,000 shear wave travel times (multi-bounce S-waves, shallow-turning triplicated phases, core reflections and phases traversing the outer core)

Modeling Mantle Convection with Seismic Tomography

Modeling Mantle Convection with Seismic Tomography

Backward Mantle Convection

- Backward simulation of mantle convection is done by reversing the time in the conservation of energy (advection only)
- Boundary conditions are consistent with plate reconstructions in the Indo-Atlantic frame of reference

Simulation: The U.S. East Coast

Simulation: The U.S. East Coast

Present-Day Dynamic Topography

Change in Dynamic Topography Over Past 3Myr

